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This paper describes the development and application of a time-domain acoustic liner
model which is suitable for the simulation of sound propagation and attenuation in lined
ducts. The #uid #ow within the duct domain is represented by the non-linear, unsteady Euler
equations while the liner model consists of a resistive frequency-independent part and
a reactive part which is obtained by solving the one-dimensional Euler equations within the
liner cavity. Specialized boundary conditions are used for matching the 1D cavity #ow and
the 2D duct #ow. The liner model has been formulated in order to predict the sound
attenuation with or without mean #ow, as well as for linear or non-linear sound
propagation. The model has been validated in the case of linear pure-tone and N-wave
signals by checking against analytical formulations obtained via eigensolutions of the
linearized inviscid #ow equations. Very good agreement was obtained for both zero and
subsonic mean #ows.

( 2001 Academic Press
1. INTRODUCTION

As the bypass ratio is increased, the level of noise emitted from the inlet of modern turbofan
engines is becoming a signi"cant component of the overall aircraft noise levels. Aero-engine
manufacturers are therefore aiming at reducing the level of noise emitted from the inlet of
turbofan-engines, especially during landing and take-o!. Current engine designs treat
nacelle inlets with laminar liners composed of porous sheets with backing air cavities. It is
highly desirable to be able to predict the liner e$ciency for various speed conditions and
hence an accurate mathematical model of the liner needs to be developed. Accordingly, the
aim of this work is to formulate a numerical model for the time-domain simulation of duct
acoustics in the presence of sound-absorbing liners.

Myers [1] derived a general acoustic impedance boundary condition by assuming that
a soft wall, i.e., an acoustically treated surface, undergoes a deformation in response to an
0022-460X/01/030379#18 $35.00/0 ( 2001 Academic Press



380 L. SBARDELLA E¹ A¸.
incident acoustic "eld from the #uid. He also assumed that these deformations were small
perturbations to a stationary mean surface, and that the corresponding #uid velocity "eld
was a small perturbation about a steady non-linear mean #ow. Such a frequency-domain
impedance condition can be expressed as:

v; ) n"!

pL
Z

!

1

iu
v6 )+ A

pL
ZB#

pL
iuZ

n ) (n+ ) v6 ), (1)

where v( and pL are the complex amplitudes of the velocity and pressure perturbations, u is
the circular frequency, n is the mean surface normal pointing away from the surface, v6 is the
mean velocity about which the linearization is performed and Z is the impedance.
A harmonic time variation of the form exp(iut) is implicitly assumed. The impedance can be
expressed as [2]:

Z (u)"oc[R(u)#iX(u)], (2)

where R (u) and X (u) are the frequency-dependent speci"c acoustic resistance and
reactance. oN and cN are the mean #uid density and speed of sound.

To the authors' knowledge, very few time-domain simulations of duct acoustics with soft
walls exist in the open literature. A time-domain implementation of the Myers impedance
boundary condition [1] was used in reference [3] to study the liner e!ects. An inverse
Fourier transform of equation (1) is needed in order to use the Myers formulation in the
time domain. As stated in reference [3], such an inverse Fourier transform results in
a convolution equation which is computationally expensive, low in accuracy and hence
impractical for multi-dimensional computational aeroacoustic problems. In reference [3],
this problem is overcome by using a z-transform and the impedance is expressed as a ratio
of two polynomial functions of frequency. The main drawback of such an approach is the
need to calibrate the polynomial functions for the speci"c conditions of the case under
study.

A di!erent time-domain approach for simulating liners composed of porous sheets with
backing air cavities was given by Reichert and Biringen [4]. The liner is modelled as
a continuous empirical source term which modi"es the right-hand side of the inviscid #ow
momentum equations. The time-domain behaviour of the frequency-domain resistance and
reactance of the liner's porous sheets are speci"ed through this source term. Therefore, the
liner e!ect is seen to be interior to the domain rather than through "nite impedance
boundary conditions as in reference [3]. The source term contains four empirical
parameters which specify the levels of linear and non-linear resistance as well as the linear
reactance of each porous sheet in the time domain. These parameters are matched to
frequency-domain impedance data via a numerical simulation of a one-dimensional
impedance tube.

The classical Myers impedance condition was derived by assuming small pressure
perturbations and linear behaviour. The more general treatment of Reichert and Biringen
[4], that can deal with the non-linear behaviour of the liner at high sound}pressure levels, is
too expensive for realistic 3D geometries such as fan assembly plus intake duct. A practical
liner model must be as simple as possible without any explicit frequency dependence since
the aim is to incorporate it into large CFD calculations of fan assemblies with intake ducts.
Such a task is achieved by treating the duct and the liner backing air cavity as two di!erent
domains which interact with each other through novel boundary conditions simulating the
presence of the liner porous sheets. Non-linear unsteady Euler equations are used to model
both the duct domain and the liner cavities, though 2D #ow is assumed for the former and
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1D #ow for the latter. As such, the time-domain liner model proposed here can be
considered to be a simpli"cation of that proposed by Reichert and Biringen. As will be
discussed in section 3.2, a velocity discontinuity arises between the duct and the liner
domains for inviscid main duct #ows. A solution is to apply linearized boundary conditions
at the discontinuity but such a liner modelling route is not necessarily bene"cial over the
Myers impedance condition. However, if the #ow in the liner is of some interest, or if there is
a requirement to rank the performance of several types, the 1D Euler modelling of the liner
may be advantageous. Furthermore, the velocity discontinuity will no longer exist if the
duct #ow can be modelled in a viscous fashion with the no-slip condition and hence the
proposed methodology will become more attractive.

2. GOVERNING EQUATIONS

The unsteady #ow "eld in the duct is modelled by the 2D Euler equations, the
conservation form of which can be written as:
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The solution vector of conservative variables U is given by:
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The inviscid #ux vectors F and G have the following forms:
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The pressure p and the total enthalpy H are related to the density o, the velocity
components u and v and the total energy E by two perfect gas equations:
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where c is a constant speci"c heats ratio. The local speed of sound is given by:

c"Sc
p

o
. (8)

The spatial discretization of equation (3) is obtained by using a central di!erence scheme
with added matrix arti"cial dissipation [5, 6]. The time integration procedure, described by
Shu [7], is an explicit three-stage Runge}Kutta scheme. Two-dimensional non-re#ective
boundary conditions are applied to the open boundaries in order to reduce the amount of
numerical re#ections of the outgoing waves [8].
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3. LAMINAR LINER MODEL

Laminar liners have been widely used in aircraft turbo-fan ducts, owing to their potential
for high mechanical integrity, and resistance to corrosive substances and erosion [9].
A laminar liner is composed of a relatively thin layer of porous material suspended over
a cavity which terminates with a re#ective backing sheet (see Figure 1). The thin layer of
porous material, which represents the interface between the main duct domain and the
backing air cavities, acts almost wholly as an acoustic resistance, while the cavities act
almost wholly as an acoustic reactance [2]. Up to quite high frequencies, the laminar liner
construction allows a particularly simple approximate expression for the calculation of its
speci"c acoustic impedance in terms of the speci"c #ow resistance, R, of the porous surface
layer and the depth, d, of the cavity [2]. Upon neglecting the inertia and sti!ness of
the micro-structure of the porous material matrix, the laminar liner impedance can be
written as

Z (u)"oc CR(u)#i cot A
ud

c6 BD . (9)

3.1. TIME-DOMAIN RESISTANCE MODEL

The speci"c laminar liner resistance R has little e!ect upon the frequency of maximum
attenuation but it governs the maximum attenuation achieved and the bandwidth of the
attenuation [2]. Therefore, in engineering terms, R may be considered to be
frequency-independent for many thin porous materials, a "rst assumption in the derivation
of the liner model.

The acoustic resistance of a thin layer of a porous material can be approximated by its
speci"c #ow resistance, the ratio between the pressure di!erence across the material and the
velocity of the #ow through the material
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Here p
d
and p

l
are the pressure in the duct and in the liner cavity domains respectively. v

l
is

the #ow velocity through the porous sheet material, the positive direction being from the
main duct domain towards the liner cavity.
Figure 1. Liner model.
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The liner resistance R
t

is particularly sensitive to the sound}pressure level. The
relationship between the sound}pressure level and the resistance can be modelled by using
a non-linear approximation which takes into account the velocity v

l
of the #ow through the

thin porous material,

R
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n K
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l
c K , (11)

where R
l
and R

n
are two known constants which depend upon the liner material.

Broadly speaking, the behaviour in the porous layer is somewhat di$cult to gauge and
hence it is not straightforward to assess when the non-linear term is going to be important.
Depending on the level of the perturbations, i.e. sound}pressure levels, liners are likely to
show a non-linear behaviour. Generally speaking, when the velocity through the liner
increases, the liner resistance also increases and the attenuation drops. In any case, some
very useful physical insight may be gained by considering speci"c casess. For pores in the
liner top layer that are small enough, the local Reynolds number will also be small. If the
layer is much thinner than a wave length, the #ow in the pore may be considered to be
incompressible. For such Stokes #ows, the velocity will be proportional to the pressure
di!erence, as indicated by equation (10). If the local pore velocity becomes large, the
Reynolds number will no longer be small and the relationship between the velocity and
pressure di!erential will become non-linear. In particular, inertial e!ects leading to jet
formation will make the relationship mean-#ow dependent as the jets will interact with the
mean #ow. Such considerations help towards explaining why the material properties of the
liner may give rise to signi"cant non-linear e!ects. For instance, compared to porous layers
and woven metal, perforated plate liners are both amplitude and mean-#ow dependent
because of the high-velocity and jet-formation e!ects.

As cited by Melling [9], the non-linear part of the acoustic impedance can dominate the
acoustic behaviour of the material at sound}pressure levels of interest in aero-engine
applications. For small perturbations, it is possible to ignore the non-linear term and such
a route will be followed here when comparing numerical and analytical results for linear
cases. If the non-linear e!ects are likely to be important, the non-linear part R

n
should be

included in the calculations. However, in this case, the main duct domain should be
modelled via Navier}Stokes equations with the no-slip condition to ensure compatibility at
the wall. This will be discussed now in more detail.

3.2. TREATMENT OF THE VELOCITY DISCONTINUITY ACROSS THE LINER

Equation (10), which assumes an instantaneous pressure jump across the porous sheet, is
used to evaluate the normal velocity at a given duct/liner-cavity interface. For an inviscid
computation, equation (10) is valid only when there is no mean #ow in the duct, i.e., when
there is no boundary layer. In the presence of a mean #ow, the duct-domain velocity normal
to the lined wall boundary, v

d
, cannot be evaluated via equation (10) by using pressures

computed for an inviscid #ow. This limitation is due to the absence of the boundary layer
e!ects which can play an important role in the sound attenuation process. In the area
of duct acoustics, a great deal of discussion exists over the apparent di!erences in
the condition depending upon whether the mean #ow is treated as viscous or inviscid
[1, 10, 11]. It is usually accepted that, when the base #ow is treated as inviscid, the proper
kinematic condition at a lined wall must be expressed physically by the requirement of
sThe contribution of the referee is gratefully acknowledged.
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continuity of acoustic particle displacement [1]. More speci"cally, such a requirement means
that the displacement of a #uid particle in the direction normal to the lined-wall boundary
must be equal to the displacement of the corresponding #uid particle in the liner. For a #uid
particle moving parallel to the x-axis with a mean axial velocity u6 , the particle displacement
d
p

and the normal velocity v are related by:
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Such a relationship is valid just above and just below the lined wall. Such a consideration
yields:
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where v
l

is the normal velocity of the particle just above the lined wall (i.e., in the liner
cavity), and v

d
is the normal velocity of the particle just below the lined wall (i.e., in the duct

domain). Combining equations (13) and (14) and di!erentiating with respect to time, one
obtains a relationship between the two normal velocities:
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Equation (15) shows that there is a discontinuity of normal velocity across the vortex sheet
in the case of non-zero mean #ow. This jump condition is applied at the stationary lined
wall by linearizing equation (15) around y"0. Such a route is very much analogous to the
classical Myers impedance boundary condition. However, the approximate linearized
treatment can be avoided by using Navier}Stokes modelling with the no-slip condition.
Such an approach will remove the discontinuity by ensuring that v

l
"v

d
and the non-linear

e!ects will be included.

3.3. DUCT-CAVITY BOUNDARY CONDITIONS

The cavity depth d has little e!ect on the peak attenuation and attenuation bandwidth,
but it strongly in#uences the tuned frequency of the liner [2]. Since the width of the liner
cavity is usually very small compared to its length, it is reasonable to assume that only plane
waves will propagate within the cavity. If the viscous e!ects can be neglected, the 1D Euler
equations should, in principle, be adequate to model the #ow within the liner cavity, both
for linear and non-linear #ow regimes. Although 3D e!ects may occur near the exit, these
are likely to be small for slender cells. In any case, a 1D liner model will be adopted here for
the numerical studies.

The computational domain for a typical liner cavity is shown in Figure 1, where n denotes
the number of points used to discretize the cavity depth. At the re#ective backing sheet
( j"n), the velocity is set to zero during the time evolution while the pressure is
extrapolated from the interior domain. At the porous sheet ( j"1), special boundary
conditions, that will be described below, are applied in order to match the value of the
velocity v

l
obtained from the liner resistance model.

It is well known that the treatment of boundary conditions is extremely important for
Euler equations and the chosen scheme can have a signi"cant e!ect on the solution. Such
a strong in#uence stems from the physical nature of the convection or propagation



SOUND-ATTENUATION IN LINED DUCTS 385
phenomena [12]. The number of physical variables that can be imposed freely at
a boundary is dependent on the propagation properties of the system and, in particular, on
the information propagated from the boundary towards the inside of the #ow region. In
order to illustrate the boundary conditions adopted in the duct-liner cavity interface, one
can re-write the 1D Euler equations at this interface in a diagonalized form,
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The characteristic form of the Euler equation is thus given by equation (16) and the
quantities dw

i
represent the characteristic variables. Such variables are associated with

plane waves; in particular dw
1

is the entropy wave with speed u, dw
2

is the forward acoustic
wave with speed u#c and dw

3
is the backward acoustic wave with speed u!c. When the

#ow is propagating from the duct domain into the liner cavity (v
l
'0), there will be two

characteristic variables which propagate from the duct domain into the liner cavity, i.e., dw
1

and dw
2

because of their subsonic convection speed (v
l
(c). On the other hand, if the #ow

originates from the cavity (v
l
(0), only one characteristic variable, dw

2
, will be propagating

towards the cavity domain.
Following from these considerations, there are two cases for dealing with the boundary

conditions at j"1 in Figure 1: two boundary conditions are required if v
l
'0 and only one

boundary condition only if v
l
)0. However, the only available physical quantity that can

be imposed is v
l
. Thus, an extra numerical boundary condition is needed for the case of

v
l
'0. This extra boundary condition is obtained by setting the "rst characteristic variable

to zero, which means that there is no entropy wave propagating towards the liner domain.

4. NUMERICAL IMPLEMENTATION

The numerical implementation of the liner model of section 3 will be presented here. First,
the discretization of the resistance model is discussed in some detail since it plays an
important role for an accurate numerical prediction of the sound attenuation.

4.1. LINER RESISTANCE MODEL

The liner resistance model is represented by three equations, namely equations (10), (11),
and (15). Before going into the details of the numerical scheme, it is worth identifying the
input and the output variables. In the following equations, the superscript m indicates a time
instant tm"t0#m*t, where *t is the time step for the numerical integration. With
reference to Figure 1, the input variables are (i) pm

l
"pm

j/1
in equation (10), (ii) pm

d
"pm

i
; also

in equation (10)s and (iii) vm
l
. The output variables are vm`1

l
and vm`1

d
.

si is the point corresponding to j"1 in the duct domain.
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The numerical algorithm for the liner resistance is implemented at the beginning of the
new time step, which advances the overall solution from time tm to time tm`1. The time
discretization of equation (15) leads to the following numerical approximation:

* (v
l
!v

d
)m`1
i

*t
#uN

Lvm`1
l
Lx

"0. (18)

In order to guarantee the numerical stability of equation (18), the convective space
derivative is implemented by using a "rst order upwind algorithm. The numerical
implementation of equation (18) on an equi-spaced 1D grid takes the form:
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By using such a "rst order formulation, problems related to undamped numerical errors are
avoided. The numerical implementation of the liner resistance model can be summarized as:
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, (20, 21)

and vm`1
d

is obtained from equations (19) and (21).

4.2. LINER CAVITY MODEL

The liner reactance model is based on the numerical solution of the 1D Euler equations
on an equi-spaced mesh within the liner cavity and the numerical algorithm is similar to
that employed in the duct domain. The two domains are coupled together by matching the
liner velocity vm`1

l
at j"1 (see Figure 1) and the normal velocity vm`1

d
in the duct wall

domain. With the change in the primitive variables due to the interior algorithm indicated
with subscript int, the boundary treatment becomes as follows.

Case vm`1
l

'0. The changes in the characteristic variables are given by:

dw
1
"0, dw

2
"oc (vm`1
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!vm

l
), dw

3
"dp
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. (22}24)

Inverting equation (17) yields:
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Inverting equation (17) yields:
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5. VALIDATION OF THE MODEL

The numerical model will now be validated in the case of a linear #ow regime for which
there are analytical solutions. The geometry considered is based on the standard lined duct
test case of reference [4]. Depicted in Figure 2, the 2D duct has the following dimensions:

¸"0)9144 m, D"0)1524 m, H"0)3048 m.

The lined part of the top surface is represented via the liner model. Plane pressure waves
are imposed at the right-hand side boundary, while the left-hand side boundary is treated as
open. All quantities are non-dimensionalized by using the following reference scales:
l
r
"0)3048 mPlength scale; u

r
"340)25 m/sPvelocity scale; o

r
"1)225 kg/m3Pdensity

scale; l
r
/u

r
"8)958 10~4 sPtime scale; o

r
u2
r
"1)418 105 PaPpressure scale. Here

standard atmospheric density and speed of sound are used as reference values.
The results will be presented in terms of sound pressure level (SP¸) distributions and

power transmitted along the duct per span (P/span). The SP¸ is de"ned as:

SP¸"10 log
10 C

(o2
r
u4
r
/¹):T

0
(p(t)!pN )2 dt

pJ 2
ref

D , (34)

where ¹ is the period of the wave, pN is the non-dimensional pressure averaged over ¹ and
pJ
ref

is the reference root-mean-square (RMS) pressure #uctuation set to 2]10~5 Pa.
The axial intensity, due to the perturbation of the energy #ux, is de"ned as

I
x
"

1

¹ P
T

0

(ohu!ohu) dt (35)

while P/span is computed as

P/span"P
ymax

ymin

I
x
dy. (36)
Figure 2. Geometry of the 2D test case.



388 L. SBARDELLA E¹ A¸.
5.1. PURE-TONE SIGNAL

A pure-tone sinusoidal pressure wave was applied to the out#ow plane with a very small
amplitude (1% of the average pressure value) and a frequency of 250 Hz. Since the regime is
linear, the liner non-dimensional resistance is governed only by the linear term
R

td
"R

l
"0)5. The cavity depth was set to 0)254 m. This depth has an unrepresentative

value as it is designed to give high attenuation at low frequency where only one mode is
propagating. In the absence of liners, the pressure waves propagate along the duct with no
attenuation, and the SP¸ computed by using relation (34), remains constant at 151 dB.

For such a test case, it is possible to obtain analytical solutions by using linearized
single-frequency methods based on linearized inviscid #ow equations [10]. Two sets of
calculations have been performed and compared with the analytical solutions: the "rst one
is the prediction of the pressure wave decay rate in the case of zero mean #ow (M

0
"0)

while the second one has a mean #ow (M
0
"0)4). These two cases test the ability of the liner

model to predict the sound decay rates correctly and the ability of the code to allow the
waves to exit the open left boundary without any spurious re#ections.

5.1.1. Zero mean -ow

The spatial discretization of the duct domain has been obtained by generating a simple
rectangular grid with 120 points in the axial direction and 40 points in the transversal
direction (see Figure 3). Remembering that the pressure waves propagate in the duct with
the speed of sound and using the reference quantities in (34), one "nds the length of a wave
with a frequency of 250 Hz to be around 4)5 times the length scale l

r
, and thus, 1)5 times the

total length of the duct. Following such considerations, the total number of points per axial
wave length (PPW) can be determined as 180. The minimum recommended value of 50
PPW suggested in references [13, 14], implies that this level of discretization guarantees
virtually zero numerical dissipation. The non-dimensional time step used for the numerical
simulation is 0)005; thus it takes nearly 900 time iterations to compute one period of the
signal. The numerical solution is considered to be converged when it becomes periodic.
Such a state is reached after 4 periods, which means that all calculations need to be
performed using about 5000 time steps. Such a calculation takes about 20 min on
a 266 MHz PC. Figure (4) shows the SP¸ along the duct for di!erent y-stations. At y/l

r
"1,

which corresponds to the lined wall, the SP¸ values are higher than at all the other
y-stations. On the other hand, the slopes of all the SP¸ curves are nearly the same at about
10 dB per length scale l

r
. This is in good agreement with the analytical solution which also

predicts an attenuation rate of 10 dB per length scale. Figure (5) shows the power drop per
span for standard and long duct-domain simulations. This "gure demonstrates that
Figure 3. Computational domain for the 2D test case.



Figure 4. Pure-tone signal: SPL along the duct with zero mean #ow. Curves, from left bottom to top: y/z
r
"0,

0)287, 0)521, 0)714, 1.

Figure 5. Pure-tone signal: power drop/span with zero mean #ow. **, Short domain; } } }, long domain.
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degradation from boundary re#ections is small. Figure (6) shows 16 unsteady pressure
contour plots for the duct domain during one period of the imposed signal. This "gure
clearly indicates the absorption of high and low pressures by the upper wall which is treated
by the liner model. A kink around x/l

r
"2)5 is observed in both "gures, a feature due to the

fact that the liner "nishes at that location.

5.1.2. Subsonic mean -ow

This test case di!ers from the previous one because of the presence of a subsonic mean
#ow with a Mach number of 0)4. The behaviour of the liner model changes since the



Figure 6. Pure-tone signal: pressure time history with zero mean #ow.
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presence of any mean #ow causes the term uN (Lv/Lx) in equation (15) to become signi"cant.
This term represents the jump of the normal velocity across the vortex sheet in the lined wall
due to the presence of a boundary layer. Figure (7) shows the SP¸ along the axial direction
of the duct for di!erent transversal stations. The slope of all "ve curves in the 0)x/l

r
)1

region remains constant at about 7)5 dB per length scale, a prediction which is again in very
good agreement with the analytical solution of 7)4 dB.

If one compares the SP¸ along the duct for the cases of zero- and non-zero-mean #ows
(Figures 4 and 7), one feature is striking: for zero-mean #ow, the SP¸ at a given axial
co-ordinate is higher in the lined wall but this is no longer true in the case of mean #ow. The



Figure 7. Pure-tone signal: SP¸ along the duct with mean #ow. M
0
"0)4. Curves, from left, top to bottom:

y/z
r
"0, 0)287, 0)521, 0)714, 1.

Figure 8. Pure-tone signal: SP¸ along transversal direction. **, M
0
"0; } } }, M

0
0)4.
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same feature is more apparent in Figure 8 where the SP¸ for the two cases are plotted along
the y-coordinate at x/l

r
"0)25.

Figure 9 shows the power drop per span obtained using the standard and extended duct
domains. The amount of re#ection at the left boundary is higher than that in the case of
zero-mean #ow (see Figure 5). The reason for such behaviour can be traced back to the
numerical evaluation of the derivative in equation (19) for point i at the open boundary.
This derivative is evaluated in an upwind manner in order to have a stable scheme and it is
set to zero for point i at the left boundary. A better approximation to this derivative should
reduce the amount of spurious re#ections at the left boundary. The power drop per span is



Figure 9. Pure-tone signal: power drop/span. **, Short domain; } } }, long domain.

Figure 10. Pure-tone signal: power drop/span zero and non-zero mean #ow. **, M
0
"0; } } }, M

0
"0)4.
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compared for zero and "nite mean #ow cases in Figure 10. There is a marked slope
di!erence between the two curves at the in#ow portion of the duct.

Figures 11 and 12 show the RMS valuess of pressure and velocity in the liner cavity at
x/l

r
"1)5 (middle of the duct) for Mach numbers of 0 and 0.4. The location l

c
/l
r
"0

corresponds to the liner porous sheet, while l
c
/l
r
"0)833 corresponds to the re#ective

backing sheet where the velocity is set to zero.
sThe RMS of a quantity u over the period ¹ is de"ned by RMS(u)"J(1/¹ ) :T
0
(u(t)!uN )2 dt.



Figure 11. Pure-tone signal: RMS of pressure in the liner cavity at the middle of the duct. **, M
0
"0;

}} }, M
0
"0)4.

Figure 12. Pure-tone signal: RMS of velocity in the liner cavity at the middle of the duct. **, M
0
"0;

}} }, M
0
"0)4.
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5.2. LINEAR N-WAVE SIGNAL

The pressure signal imposed at the out#ow will now take the form of an N-wave but
the amplitude and frequency of the pressure wave, the liner resistance and the cavity
depth will remain unchanged. The computational grid of the pure-tone case is also
used here (see Figure 3). The results for the case of zero mean #ow are shown in
Figures 13}16. The decay rate of the "rst harmonic is about 10 dB per length scale l

r
which



Figure 13. Linear N-wave: SP¸ of "rst harmonic for zero mean #ow. Curves, from left, bottom to top: y/z
r
"0,

0)287, 0)521, 0)714, 1.

Figure 14. Linear N-wave: SP¸ of second harmonic for zero mean #ow. Curves, from left, top to bottom:
y/z

r
"0, 0)287, 0)521, 0)714, 1.
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is almost identical to that obtained for the pure-tone signal. The decay rate for the
second harmonic is very close to the analytical value of 0)5 db per length scale, while the
decay rate for the third harmonic is seen to be di!erent for di!erent y-stations. For
this particular harmonic, the analytical results indicate a decay rate of 0)13 db per length
scale, which is quite di!erent from the numerical predictions. This discrepancy is probably
due to the limitation of the liner resistance model which is considered to be frequency
independent.



Figure 15. Linear N-wave: SP¸ of third harmonic far. Zero mean #ow.

Figure 16. Linear N-wave: power drop/span for zero mean #ow: **, 1st harmonic; } } }, 2nd harmonic;
} ) } ) }, 3rd harmonic.
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6. CONCLUSIONS AND FURTHER WORK

A time-domain laminar liner model suitable for aero-engines applications has been
developed. The model combines a frequency-independent resistive part and a reactive part
which is obtained by solving the #ow within the liner cavity. The model is valid with and
without mean #ows, as well as for linear and non-linear sound propagation. The model has
been validated for the linear cases by comparing the computational results on a 2D duct
with the analytical ones. Good agreement is obtained in all cases considered.

The main features of the model are as follows: (i) Multi-frequency problems can be solved
in one calculation. (ii) The frequency dependence of the liner impedance does not appear
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explicitly in the formulation of the model but this e!ect is taken into account in the
reactance model through the solution of the #ow within the liner cavity. (iii) The liner model
is characterized by three parameters only: the linear and non-linear parts of the resistance
(R

l
and R

nl
) and the cavity depth d. This is an important feature if one has to perform

a parametric study of the liner response.
The method can be used for non-linear sound attenuation in the case of zero-mean #ow,

even though no numerical results are given for this case. For inviscid, non-zero mean #ows,
a velocity discontinuity occurs at the liner boundary. Although it is possible to linearize
such a jump, a more accurate treatment in principle, is possible by viscous modelling of the
main #ow. However, such an approach will have to deal with turbulent boundary layers
and #ow separation from the porous layers.

In the case of a linear N-wave, the decay rates of the "rst two harmonics were predicted
correctly, while that for the third wave di!ers signi"cantly from the analytical solution. This
is probably due to the limitation of the liner resistance formulation which is assumed to be
frequency independent, An improved model which includes a frequency-dependent liner
resistance will be discussed in a forthcoming paper.
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